
1

sdmay23-38

Gelli Ravikumar - Advisor
Josh Clinton - Frontend Lead

Tanay Parikh - Data Lead

Ryan Herren - Machine Learning Lead

Elvis Kimara - Voice Assistant Lead

Rolf Anderson - API, DevOps & Architecture Lead

sdmay23-38@iastate.edu

sdmay23-38.sd.ece.iastate.edu

Revised: April 29, 2023

GridAI

FINAL PROJECT REPORT

2

Development Standards & Practices Used

Practices Used

● Agile methodology

● Git Version Control

● GitLab CI/CD

● Remote VM testbeds

● Cloud integration

Engineering Standards

● IEEE Data Standards

● HTTP

● IEEE P2840™ - Standard for Responsible AI Licensing

● IEEE P2841™ - Framework and Process for Deep Learning Evaluation

● ISO/IEC 21778:2017 - JSON

● React Architectural Standards

Summary of Requirements

1 Functional Requirements

1.a Program must run locally and be deployable.

Executive Summary

3

1.b Display all necessary power grid data in an interactive grid, such as

the amount of power each node uses and how each node is

connected.

1.c Capable of running all parts of the program from our speech

recognition software.

1.d Utilize machine learning to predict and display future power grid

anomalies.

1.e Highlight specific problem areas to help field technicians, such as

current power outages.

1.f Allow for both broad and specific scaling of the displayed grid so

that users can look at the power grid at both a micro and macro

level.

 2 Aesthetic Requirements

2.a Display all the grid information on a map clearly and concisely so

that the data is easy to read and understand.

2.b Display all the grid information on different types of maps, such as

terrain maps, overhead maps, and satellite maps.

 3 Security Requirements

3.a Limits accessibility to only those authorized, such as the local

government and authorized employees.

3.b Securely receive data without leaks for displaying data about future

anomalies, current issues, and current power levels.

Applicable Courses from Iowa State University Curriculum

COM S 227: Object-oriented Programming

4

COM S 228: Intro to Data Structures

COM S 309: Software Development Practices

COM S 363: Intro to Database Management Systems

COM S 409: Software Requirements Engineering

COM S 572: Principles of Artificial Intelligence

COM S 574: Intro to Machine Learning

DS 201: Introduction to Data Science

DS 201: Data Acquisition and Exploratory Analysis

DS 301: Applied Data Modeling and Predictive Analytics

DS 303: Concepts and Applications of Machine Learning

New Skills/Knowledge acquired that was not taught in courses

List all new skills/knowledge that your team acquired which was not part of your Iowa

State curriculum to complete this project.

● Machine Learning

● Reinforcement Learning

● Data Pipelines

● Python development practices + environments

● Component-Based JavaScript

● Frontend Integration

5

Table of Contents

1 Team 7

2 Introduction 8

3 Project Plan 11

3.1 Project Management/Tracking Procedures 11

3.2 Task Decomposition 11

Epics: 11

General: 11

Data: 12

Machine Learning: 12

Frontend: 12

Voice Assistant 13

CI/CD: 13

Testing: 13

3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 14

3.4 Project Timeline/Schedule 15

3.5 Other Resource Requirements 15

4 Design 15

4.1 Design Context 15

4.1.1 Broader Context 15

4.1.2 Prior Work/Solutions 17

4.1.3 Technical Complexity 18

4.2 Design Exploration 19

4.2.1 Design Decisions 19

4.3 Design 19

4.3.1 Overview 19

4.3.2 Detailed Design - Front End 21

4.3.3 Detailed Design - API 22

4.3.4 Detailed Design - Data 22

4.3.5 Detailed Design - Machine Learning 22

4.3.6 Detailed Design - Virtual Assistant 24

5 Testing 24

5.1 Unit Testing 24

5.2 Interface Testing 24

6 Future Work 25

6.1 Front End 25

6

6.2 Data Platform 25

6.3 Machine Learning 25

6.4 Virtual Assistant 26

6.5 Architecture and Platform Operations 27

7 Closing Material 27

7.1 Conclusion 27

7.2 References 27

7.3 Acknowledgments 28

7

1 Team

1.1 TEAM MEMBERS

Rolf Anderson

Josh Clinton

Ryan Herren

Tanay Parikh

Elvis Kamara

1.2 REQUIRED SKILL SETS FOR YOUR PROJECT

Machine Learning/Statistics

Advanced Programming Techniques

Database Administration

Cloud Computing

1.3 SKILL SETS COVERED BY THE TEAM

Machine Learning/Statistics - Ryan, Elvis

Cloud Computing/DevOps - Ryan, Tanay

Front End Development - Josh, Rolf, Elvis

Back End Development - Josh, Rolf, Tanay

8

1.4 PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM

Agile Scrum. Weekly scrum meetings during development cycles (sprints) to make

progress iteratively. Sprints are three weeks long, using the first two weeks for

development and the final week for testing and verification. A sprint retrospective will

happen at the first meeting of each new sprint, along with a sprint planning meeting for

the new sprint. Meetings happen twice a week, on Mondays and Wednesdays, to provide

time for updates on progress and to allow for feedback to be given throughout the group.

1.5 INITIAL PROJECT MANAGEMENT ROLES

Product Owner - Ravikumar Gelli

Scrum Master - Ryan

Development Team - Rolf, Josh, Tanay, Elvis

2 Introduction

2.1 PROBLEM STATEMENT

The power grid is growing more complex and adding more infrastructure each day. With

this growth comes a drastic need for power companies to increase monitoring and gain

insight into the health of the grid. To improve our insights and allow for predictive

analytics to keep the power grid functioning, we will build a platform that intakes and

analyzes power grid data to provide insights into failures to the responsible maintenance

teams. Additionally, to prevent further outages, we will build machine learning

applications to evaluate current power grid conditions and predict when potential

outages or anomalies may occur to decrease response time for responders and keep the

grid functioning to its fullest capacity.

9

2.2 INTENDED USERS AND USES

Energy Companies

The primary intended users for our project are energy companies. The energy

sector relies on robust operations and uninterrupted service to customers. As our

project provides visibility and analytics of power grids, their specific operators are

our most important clients. As grid complexity increases yearly, it is increasingly

important for these companies to utilize every tool available to proactively address

emerging threats.

i. Headquarters

The power companies will need to monitor the grid on a large scale

to make important decisions and fix issues before they happen.

 ii. Repair and Maintenance Technicians

Our project will benefit field technicians by giving them visibility

into specific issues and confirmation when corrected.

Government Organizations

Local, regional, and national governments have a vested interest in maintaining

power grid uptime. Issues and resulting downtime can be major headaches for

governments at every level. While not directly responsible for power grids and

their upkeep, recent history has shown that incompetent power companies can fail

to responsibly manage their domain. Thus, it would be prudent to provide

governments with the tools to keep energy companies accountable.

*Note: Due to the sensitive nature of the data we collect and display, we limit who

can access our product. Only the power companies, and potentially the

government with jurisdiction, will have access. No other users are allowed.

10

2.3 REQUIREMENTS & CONSTRAINTS

List all requirements for your project. Separate your requirements by type, including

functional requirements (specification), resource requirements, physical requirements,

aesthetic requirements, experiential user requirements, economic/market requirements,

environmental requirements, UI requirements, and any others relevant to your project.

When a requirement is also a quantitative constraint, separate it into a list of constraints

or annotate it at the end of the requirement as “(constraint).” Ensure your requirements

are realistic, specific, reflective, in support of user needs, and comprehensive.

2.4 ENGINEERING STANDARDS

What Engineering standards are likely to apply to your project? Some standards might be

built into your requirements (Use 802.11 ac wifi standard) and many others might fall out

of design. For each standard listed, also provide a brief justification.

● IEEE Data Standards

○ Our project and included services will use various IEEE data standards. As it

is a project centered on data storage and analysis, it is imperative that each

piece of data uses the most relevant formatting standard.

○ i. int

○ ii. string

○ iii. float64

● HTTP

○ HTTP requests are integral to data transfer in our project. Our APIs utilize

HTTP methods such as GET and POST to transfer data between services

and from external sources.

● IEEE P2840™ - Standard for Responsible AI Licensing

○ Our project and included services will use various IEEE data for responsible

AI licensing Standardized definitions for referring to components, features,

and other elements of AI software, source code, and services.

● IEEE P2841™ - Framework and Process for Deep Learning Evaluation

11

○ This document defines best practices for developing and implementing

deep learning algorithms and defines a framework and criteria for

evaluating algorithm reliability and quality of the resulting software

systems.

● ISO/IEC 21778:2017 - JSON

○ When transferring data between services and from external sources, our

project heavily relies on data marshaling in JSON. This almost universal

industry standard facilitates painless integration with external APIs and

data sources.

● React Architectural Standards

○ Only include one React component per file, favor functionless components,

do not use mixins, no unneeded comments.

3 Project Plan

3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES

We used Agile for development. We progressed weekly on our already determined plan

for the year and presented it to our client every Monday. The decomposition of tasks

allowed for incremental development with easy integration to existing code when

features were complete.

We used Gitlab to track our progress and assign tasks to our team members. All of our
tasks were organized on a kanban-style board. Discord was the primary method used to
communicate with teammates and conduct online team meetings.

3.2 TASK DECOMPOSITION

Epics:

 General:

➔ Explore the project codebase from last year.

➔ Set up development environments.

◆ Set up 5 VMs for developers.

◆ Run project services locally.

12

 Data:

➔ Integration of .dss files into the data upload system.

➔ Simulate .dss files with python dss API

➔ Configure Neo4J and Influx databases

➔ Add relationship between all the node data in Neo4j

➔ Configure data pipelines for ML.

➔ Update databases to reflect ML changes.

 Machine Learning:

➔ Verify sources.

➔ Build data acquisition and ingestion pipelines.

➔ Clean data.

➔ Create a model.

◆ Train model.

◆ Re-evaluate the model as needed.

 Frontend:

➔ Implement Machine Learning Algorithms and Voice Assistance

◆ Communicate with backend

◆ Design and Implement UI

➔ Redesign UI System

◆ Design new look

◆ Implement new look

◆ Add graph layers for different data

◆ Add hover and click functionalities

◆ Create a line chart on a node click

➔ Task: Implement Filesystem

◆ Design the page

13

◆ Link with UI

◆ Push Data to Backend

◆ Retrieve Data from Backend

 Voice Assistant

➔ Deploy and analyze code.

◆ Remove deprecated methods.

➔ Implement new voice commands.

➔ Manage dependencies.

◆ Update or remove deprecated dependencies.

◆ Review dependencies for security flaws.

➔ Integrate with frontend.

CI/CD:

➔ Remove all hard coded links in code, and replace them with Gitlab
CI/CD variables.

◆ Replace hard coded links in the frontend.

➔ Update pipelines to deploy to reflect new environments.

Testing:

➔ Achieve full testing code coverage.

◆ Full voice asst. code coverage.

● Write voice asst. unit tests.

◆ Full data platform code coverage.

● Write data platform unit tests.

◆ Full frontend code coverage.

● Write frontend unit tests.

◆ Full machine learning code coverage.

● Write machine learning unit tests.

14

➔ Complete integration testing.

➔ Complete system testing.

➔ Complete regression testing.

➔ Complete acceptance testing.

3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

TIMEFRAME MILESTONE Metrics Evaluation Criteria

10/22 to 12/22 Explore Project
Codebase

N/A Team members
understand the
codebase.

12/22 to 03/23 Voice Asst.
MVP

Voice asst. coverage
of available
functions.

100% coverage.

10/22 to 01/23 Data platform
completed

DSS Files Stores and processes
all values in DSS
files.

10/22 to 03/23 Enhance Front
End

Relevant QGIS
Features

50% relative parity.

11/22 to 04/23 Complete and
Integrate ML

Anomaly and
Prediction

Able to detect 75%
of anomalies and
predictions are at
least 80% accurate.

15

3.4 PROJECT TIMELINE/SCHEDULE

 See Appendix 8.4.1 for larger image

3.5 OTHER RESOURCE REQUIREMENTS

Due to our project being completely software-based, we only require a few resources. To
host and deploy our project, we will need a Google Cloud Platform (GCP) account and
credits. We will also require Iowa State’s self-hosted version control system, Gitlab. For
development and testing purposes, we will also require example data to simulate what
contexts our system would experience in production.

4 Design

4.1 DESIGN CONTEXT

4.1.1 Broader Context

We are designing our product for use by local governments in combination with
utility/energy companies.

The community using our product is limited to people with access to power grid
information who are responsible for performing maintenance on the power grid to
prevent/restore outages.

16

The communities affected by our design are endless. Nearly everyone in the United States
relies on electricity provided to them by the power grid, so any impact our product can
make on ensuring that the power grid stays healthy will impact millions of people.

Our project addresses the need for more oversight and visibility into the health of the
power grid, which is nearly nonexistent right now. The more data you have to see how
the grid is doing, the better you can address the issues and prevent them in the future.

The list below outlines relevant considerations related to our project in the following

areas:

Area Description Examples

Public health,
safety, and
welfare

There are innumerable public
safety benefits to ensuring
normal power grid operation.
While our project would not
solve problems directly, early
detection of developing issues
in the grid could be the
difference between a normal
winter storm and the infamous
2021 Texas power crisis.

Hospitals and the patients
within depend on the many
systems functioning correctly.
While they have on-premises
generators, these are only stop-
gap solutions to short-term
outages.

Also, summer air conditioning
units are critical for public
safety, especially for the elderly.
Heat waves can be deadly, and
badly-timed grid disruptions in
the past have shown this.

Global,
cultural, and
social

Our project reflects the values
and practices of the cultural
groups very well. It’s not
limited to nations, workplaces,
etc., because it touches
everything. Our project would
predict power outages and stop
them from happening, thus
giving societies the freedom to
carry on with their existing
norms and practices.

During the Chinese New Year
celebrations, our project will
help ensure abrupt power
outages shan’t occur, thus
allowing for this cultural
tradition to go on.

17

Environmental This project will decrease
energy usage from
nonrenewable sources.
Catching anomalies early can
reduce the need for fossil fuels
to fill energy gaps caused by
them.

For example, power disruptions
may lead to businesses and
organizations activating
inefficient diesel power
generators hosted on-premises.
Disruptions may also affect the
ability of private solar power
generators to provide excess
power to the grid, negating any
positive effects of these
systems.

Economic This project will save energy
companies and local
governments money by
preventing power outages and
other grid issues and increasing
the speed at which issues can
be resolved. Our project could
cause energy companies to
downsize if it is successful
enough Because they will need
fewer technicians.

For example, when the power
grid goes down, local coffee
shops will not be able to
process their credit card
transactions. This is just a small
example, but it shows how
many places are impacted
economically by outages of the
power grid.

4.1.2 Prior Work/Solutions

OpenDSS is currently a software used to provide insights into the power grid, but it is
only available as a desktop application and is a very bulky program. It allows you to see
the grid based on existing datasets, toggle through different types of electricity(single
phase vs. three phase), and filter by types of users.

The previous work is a great start, but it’s hard to access and inefficient. It is only
available as a desktop application, so it can’t be accessed remotely via any web browser,
which is a goal of our project. A website that implements that kind of functionality would
be a great asset to all utility companies and local governments. Second, since it’s not web-
based, it requires a great amount of processing power and local machine usage to run. A
cloud-based web application takes all of the load off of the user and puts it on the
backend, making it easier to use for the end user.

There’s work being done by Camus Energy, along with the Pacific Northwest National
Laboratory and Kit Carson Electric Cooperative, that are building a machine learning

18

model that will fix gaps in its grid data. They have received over $750,000 in funds from
the US Department of Energy (Camus, Feb. 14, 2022).

PROS

● Our project is sponsored by Iowa State University, and we have a powerful server
(one of the best in the US) meant just for us. We also have great resources like
Virtual Machines with 4TB space, GCP, an experienced client/professor, and many
others.

● We have a solid team of senior software engineering students compared to other
projects that might just have one programmer who only works in his/her free time

● We are building on a two-year-old working repository and thus not starting from
scratch.

CONS

● We are students with limited expertise in this field, so other teams without such a
problem are way ahead.

● Our motivation is slightly above or below meeting a class requirement. This might
not be as high as someone motivated to do this to get a job, start a business, or get
income for his family. Thus, they have more reason to put in more effort than we
do.

● We have a short timeframe to work on this project. As a senior design project, we
have a year and after that are finished. This is a con, as other (non senior design)
teams could have many years to complete a project.

4.1.3 Technical Complexity

1. Our design consists of multiple components/subsystems. We use APIs, hosts like
firebase, GCP, environments in GitLab, webhooks for the google voice assistant,
react framework for the frontend and neural networks for machine learning, and
neo4j for the influx database.

2. Our project contains many challenging requirements, including creating our own
machine learning models. We will use neural networks instead of the old linear
learning machine learning models. Another challenging requirement of our project
will be using GEOMap to display different layers in the map using the nodeID
from the database.

https://www.camus.energy/blog/overcoming-imperfect-grid-data-with-machine-learning

19

4.2 DESIGN EXPLORATION

4.2.1 Design Decisions

1. Neural network RL model via A2C algorithm provided by Stable-baselines3, an
open-source library of reinforcement learning algorithm implementations. This
choice gives us the performance and accuracy necessary for our anomaly detection
and the ability to use different actions in response to anomaly detection in order to
create a relevant and working Reinforcement Learning algorithm.

2. Voice assistant. This feature will enable quicker and more natural interaction with
our project for our users. With the ability to interact with your phone with your
voice, it allows utility workers to check on the status of the grid or specific
substations hands-free.

3. Use GEOMap to display node data to the frontend. This allows us to display data
in different layers on a grid. This will allow users to filter unnecessary data.

4.3 DESIGN

4.3.1 Overview

We have three major components in the current design: the backend, the frontend, and

the database. The database is where all the data will be stored, and it has its own request

handler to handle all the requests. The backend is where all the logic of the application is

performed. For example, all of the machine learning models and APIs live here, and it also

has its own request handler, so it can send and receive requests to and from the frontend

and the database. The frontend is where all the visuals are processed. It has its own

request handler, so it can request data from the database and display it.

20

Fig. 1, Design Components Overview

21

Fig. 2, UI Basic View

4.3.2 Detailed Design - Front End

Our project is a system consisting of a React web app frontend and several backend

services connected through an API, as seen in Fig. 1. The frontend allows users (power

company personnel, government monitoring agents, etc.) to view the current state of the

system, as seen in Fig. 2. Users are able to examine individual nodes which will include

their past and predicted future values. Furthermore, the frontend will alert users to

current or predicted future anomalies which may indicate dangers to the power grid’s

health. An additional feature of the frontend is the implementation of a chat assistant,

allowing more natural and flexible interaction with the system. The chat assistant is

integrated with the web app frontend. The backend will consist of several microservices

deployed to Google Cloud Platform (GCP). Influx and Neo4j will be used for backend data

storage but currently we only connect to Neo4j and don’t have access to live data. The

frontend uses GCP Firebase for data storage specific to the frontend, such as profile

information. Our system will leverage Tensorflow on Python through two machine

learning (ML) services designed to predict future values and detect anomalies respectively

but currently, because influx isn’t working, we only display static data. The frontend and

backend services communicate with each other through a RESTful API implemented in

Go (also known as Golang). External data sources, shown as the transmitter nodes in Fig.

1, will push data to the system through this API. This is how data in the system at large is

updated. The frontend itself is laid out into three main sections. The components, pages,

and libraries. All of the technical code is in the components, the pages create, format, and

display the components, while the lib contains the API calls, creates the node layers, and

22

has other helper methods and hooks. We use DeckGL and MapBox to create the world

map and display the grid data.

4.3.3 Detailed Design - API

Our implementation includes a discrete, centralized API that all external and inter-

service communication is routed through. It is a simple RESTful API build using the Go

programming language. It serves to decouple services from each other, decreasing

coupling and making maintenance and evolution easier.

4.3.4 Detailed Design - Data

Our Data Platform consists of two discrete database systems. Neo4j, a graph-based

database, stores the static information of power grid components as nodes and edges.

Static information includes the geographical location of the components and busses

which are stored as nodes and lines which are stored as edges. InfluxDB, a time-series

database where we store voltages for buses, current, active power/reactive power for the

lines or edges. We also store capacitor, transformer and PV data, like kV, kVar in a time

series fashion from the present and past dynamic data of each grid component. We use

these databases in combination to allow visualization of the grid, its components and

their relationships from Neo4J, as well as storing the temporally dynamic information of

the grid. Information is uploaded by the given .dss files and using a python package like

DSS-Python to simulate the dss file and using Influx and Neo4j queries to upload all the

large amounts of data. The data is accessed by other components of the project like the

front end, Machine Learning and Virtual assistant through our separate API service.

4.3.5 Detailed Design - Machine Learning

One of the most exciting aspects of the project is the use of cutting-edge machine

learning and artificial intelligence tactics to provide volt-var control for power systems.

The main goal of this section is to use live, constantly-updating data from the grid to

better learn its behaviors over time and provide automated actions to prevent outages of

the grid.

To accomplish this, we implemented a reinforcement learning environment–a kind of

machine learning where an intelligent (computer) agent interacts with an environment

and learns how to best act to achieve a goal state. This agent is trained on rewards and

penalties based on the results of their actions, and can learn how to effectively act in

given states to work towards its goal.

Our environment for this project was based on PowerGym [2], a 2018 implementation of a

Gymnasium environment built specifically for reinforcement learning for volt-var control.

23

This allowed us to run training models on pre-built systems within the environment. To

pair with the virtual environment, we used algorithms from StableBaselines [6], an open-

source set of improved implementations of reinforcement learning algorithms based on

the OpenAI Baselines [7]. Our primary algorithm is the Advantage Actor Critic (A2C)

algorithm, which utilizes two function approximations (neural networks) that has the

actor perform an action (policy) and then get feedback (reward/value) from the critic on

its effectiveness. The policy is analyzed by the critic and given a reward based on the

effect of the policy to progress towards a goal state. Once the model is trained

(policy/reward stage) it can then be used to choose actions on real or simulated

environments. This testing stage allows you to evaluate the effectiveness and accuracy of

the model- whether it successfully provides voltage regulation or if it doesn’t fix

fluctuations.

The outcome of the reinforcement learning modules is a significant one- it has the

potential to allow for completely autonomous control of increasingly complex power

systems. With thousands of different nodes in a system, performing preventative actions

is incredibly difficult, but with an automated control system trained on advanced

algorithms, a computer can stop outages before they even happen.

Our design for the ‘Machine Learning’ part of the project changed drastically from the

beginning stages of design to where we’re at now. The last team left us with little

resources and less implementation of ‘anomaly detection,’ which was used to recognize

where outages, surges, or bottlenecks were happening. This was originally marked as a

point of improvement, but was left in the backlog for the duration of the project, as most

of the effort went into solidifying the data platform before spending large amounts of

time implementing a reinforcement learning environment.

Another main point of focus was making sure that the reinforcement learning

infrastructure was beneficial to the end-user, which meant that a lot of work needed to go

into presenting the data on the front end. The main product of the reinforcement

learning module is a time-series chart showing voltage variations over time. In this

system, you will be able to see where actions are taking place in order to regulate voltage

and the effectiveness of those actions. These charts currently provide information to the

operators on courses of action to take when voltages are trending in directions that are

too far away from the optimal value. In the future, this system could be completely

automated, with the model providing best choice actions to enact on the system to

provide further variations.

We ran into many problems while building out the initial foundation for a reinforcement

learning system. Getting the environment configured correctly to run independently of

the platform proved to be a challenge, primarily due to the old age of the PowerGym

24

library and its dependence on old versions of Python, which caused build and integration

issues with other Python libraries. The combination of using PowerGym, which is based

on the broader Gymnasium library, Stable-baselines3, and other Python libraries like

Tensorflow and DSS, required a very specific concoction of versions and dependency

installations, which took a lot of time and effort to configure correctly before actual

reinforcement learning development could begin.

4.3.6 Detailed Design - Virtual Assistant

Our project’s Virtual Assistant component leverages SpaCy Natural Language Processing

(NLP) to improve accessibility of information. We use a React component similar to a

chat box to communicate with a SpaCy based backend service. When a user enters text, it

is sent to our assistant service, which uses NLP techniques to process the user’s input and

return the appropriate response. Some user commands result in database queries to get

real time data about the power grid like system health, and current voltage. All these are

returned as a json response and rendered by the frontend chatbot that currently hovers

on the bottom right of the homepage.

5 Testing

5.1 UNIT TESTING

We used unit testing extensively in our projects for all of our components, as well as
integration testing all the components with the API to see if the system components
communicate well with each other. For this, we will use tools like Pytest and jest.

5.2 INTERFACE TESTING

There are a lot of components in our project that will require a great amount of testing in
regard to the interfaces. First, most of our project runs through an API that takes data
from the power grid and integrates it into our environments. We will have to test that
interface to ensure that the data is being ingested correctly. Next, once the data is in our
environments, we will need to test the interface between the databases and our Google
Cloud Platform environment, which is where most of the computation will happen. GCP
controls the hosting of all aspects of our project, so it will be important to ensure that it
interfaces correctly with the databases. Our methods of interface testing will be workflow
and performance tests. We will be testing the workflow to make sure that it is able to
ingest live data and support our real-time analytics, which will be part of the functionality
of the site. Second, we will have to test the performance of our infrastructure to make
sure that it can efficiently integrate high volumes of data.

25

6 Future Work

6.1 FRONT END

There are many things that can be enhanced on the frontend to provide better

functionality. The biggest thing is to implement a file-system that allows a user to upload

and download files into the database from the frontend and store them on their accounts.

This improvement will allow for greater functionality and allow users to use this program

on a broader scale. An issue they will need to solve is how to set the initial view state

based on the position of the data.

Another improvement to be made will be to create a page containing several line charts

for data such as consumption and voltage that allows a user to select which nodes they

would like to see. This can be an entirely separate page dedicated to a large line graph as

opposed to the one on the main page that is quite small. The larger line charts will be able

to show more than one node at a time as well. Lastly there are always visual changes that

can be made. Over the course of this project I focused much more on the functionality

and the logic to make things work than I did about the visuals.

6.2 DATA PLATFORM

There remains some work to be done in the database domain like adding a functionality

where the data is coming directly from the power grid and the utility companies are

getting live predictions of Potential faults from the machine learning section back to the

database and up to the frontend . Furthermore having a file management center on the

frontend where the users are able to download their data after logging in to their account,

where then the frontend would call API to call all the .dss files saved in the database for

that user . Also some other functionality where time is also being simulated, Currently

when we simulate the master .dss file it only gives the data for that one step. I would have

liked to add a functionality where after that step or the time frame is complete, the step

would increment to the next step or time frame and upload the simulated data.

6.3 MACHINE LEARNING

There remains much work to be done in the Machine Learning domain, but the
foundation is set for more efficient progress in the future stages of GridAI. The future of
the reinforcement learning module developed throughout this iteration of the project
falls into three major objectives: frontend enhancements, live data platform integration,
and algorithmic enhancements.

On the current frontend, the full scope of the reinforcement learning work is
underrepresented. In the future, it would be great to add sections to see the accuracy of
different training algorithms outside of just A2C (see third paragraph) and be able to

26

toggle different reinforcement learning graphs based on what you’re looking to learn. The
front-end for the current project is primarily focused on just the analytics and less on the
predictive modeling. As the reinforcement learning module continues to be developed,
the frontend will have to grow to reflect the greater capabilities.

Secondly, and likely most importantly, the reinforcement learning module still needs to
be incorporated into the live data coming from the API. This was a goal from the
beginning of our iteration of the project, but was something that was not a priority while
working on getting the foundation for reinforcement learning paved. In the current
system, all of the training is done on pre-defined environments provided by the
PowerGym library, which restricts the amount of different training environments
available and doesn’t give us the most live, real-life data to train on. In the future, the RL
algorithms and environment can be connected to the live data, which then can be trained
on and simulated using platforms to provide the most accurate simulated environments
for reinforcement learning.

Last, there is a lot of room for improvement in the algorithms and methods being used to
perform reinforcement learning to create models for volt-var control. Right now, there is
only one working algorithm (A2C), but there are plenty of other options for algorithms
that would provide supplemental learning on variation control, like PPO1. Once these
algorithms have been further developed, there is also lots of room for improvement in
respect to tuning of each individual algorithm’s hyperparameters. Right now, there is
little hyperparameter tuning outside of general changes to iterations, gammas, activation
functions. In the future, working hyperparameter tuning into regular re-trainings of the
models would be an effective way to ensure maintenance of the algorithms and increased
accuracy over time. We did a little research on implementing a grid search algorithm to
tune hyperparameters, but the time crunch left that beyond the scope of this iteration of
the project.

6.4 VIRTUAL ASSISTANT

In the future, we’d need to have an automated testing environment for future assistant

deployments, analytics, and reporting. Ths would help us track our training process and

analytics. We also plan on expanding assistant functionality, scalability, training, and data

collection so that it’s more robust. Other ideas involve adopting speech to text, more

commands, and API calls. Plus more requirements gathering needs to be done in the

future iteration of the project so that a well defined long term NLP goal, product, and

technology is established.

6.5 ARCHITECTURE AND PLATFORM OPERATIONS

For Continuous Integration/Continuous Delivery (CI/CD) and infrastructure deployment,
we used Gitlab CI/CD and GCP. We published and deployed Docker containers using

27

Cloud Run on GCP. While Cloud run is an efficient system, it lacks the flexibility and
power needed for more complicated full stack systems like ours. Switching to using the
orchestrator Kubernetes with Google Kubernetes Engine (GKE) would benefit GridAI in
the long term. Using Cloud Run for production deployments is not common in
professional environments, whereas Kubernetes and GKE are extremely common in
professional environments. Furthermore, using Terraform to provision and manage
infrastructure would stand to give even more positives to GridAI. Infrastructure as Code
(IaC) languages like Terraform have become very popular in modern cloud systems. It
gives benefits such as repeatability, centralized state storage, and the ability to manage
the system from one interface, rather than using the GUI.

7 Closing Material

7.1 CONCLUSION

While our project has not completely met the requirements set forth, we made important

contributions and design changes that successfully furthered GridAI. Our project is a

multi-year one, with difficult concepts and implementations. While we wish we could’ve

seen the project to completion, we are satisfied with the results. This project has been at

times grueling, but we all learned much, and gained important skills that we will leverage

during our careers.

7.2 REFERENCES

[1] Overcoming Imperfect Grid Data with Machine Learning | Camus Energy.

https://www.camus.energy/blog/overcoming-imperfect-grid-data-with-machine-

learning. Accessed 21 Oct. 2022.

[2] PowerGym: A Gym-like environment for Volt-Var control in power distribution

systems. | Github https://github.com/siemens/powergym. Accessed 21 Nov. 2022.

[3] QGIS: A Free and Open Source Geographic Information System |

https://www.qgis.org/en/site/. Accessed 21 Nov. 2022.

[4] Ravikumar Gelli | Research Assistant Professor | Iowa State University Department of

Electrical and Computer Engineering.

[5] sdmay22-35: GridAI | Site http://sdmay22-35.sd.ece.iastate.edu. Accessed 21 Nov.

2022.

[6] Stable-Baselines3: Reliable Reinforcement Learning Implementations. | Github

https://github.com/DLR-RM/stable-baselines3. Accessed 28 Apr. 2023.

https://www.camus.energy/blog/overcoming-imperfect-grid-data-with-machine-learning
https://www.camus.energy/blog/overcoming-imperfect-grid-data-with-machine-learning

28

[7] OpenAI Baselines. | Github https://github.com/DLR-RM/openai/baselines. Accessed

28 Apr. 2023.

7.3 ACKNOWLEDGMENTS

This research is funded partly by US NSF Grant # CNS 2105269 and US DOE CESER Grant

DE-CR000016.

	1 Team
	2 Introduction
	3 Project Plan
	3.1 Project Management/Tracking Procedures
	3.2 Task Decomposition
	Epics:
	General:
	Data:
	Machine Learning:
	Frontend:
	Voice Assistant
	CI/CD:
	Testing:

	3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria
	3.4 Project Timeline/Schedule
	3.5 Other Resource Requirements

	4 Design
	4.1 Design Context
	4.1.1 Broader Context
	4.1.2 Prior Work/Solutions
	4.1.3 Technical Complexity

	4.2 Design Exploration
	4.2.1 Design Decisions

	4.3 Design
	4.3.1 Overview
	4.3.2 Detailed Design - Front End
	4.3.3 Detailed Design - API
	4.3.4 Detailed Design - Data
	4.3.5 Detailed Design - Machine Learning
	4.3.6 Detailed Design - Virtual Assistant

	5 Testing
	5.1 Unit Testing
	5.2 Interface Testing

	6 Future Work
	6.1 Front End
	6.2 Data Platform
	6.3 Machine Learning
	6.4 Virtual Assistant
	6.5 Architecture and Platform Operations

	7 Closing Material
	7.1 Conclusion
	7.2 References
	7.3 Acknowledgments

